
Axiom of Choice

We begin by understanding why we need the Axiom of Choice at all, and why it is a natural thing to
assume. Consider the following thought experiment: we have infinitely-many bins (let’s say for simplicity
that they’re numbered 0,1,2, . . .) and in teach bin is a pair of shoes. Is there a way to select from each
bin a shoe? Sure, we can just take every left shoe, for example. But what if instead of a pair of shoes in
each bin, we have a pair of socks. What then? If we are to assume that the two socks in a pair are entirely
undistinguishable, how can we be sure we can always pick one, since we can create no rule by which to pick
a sock from each pair? This is where the Axiom of Choice comes in. It guarantees that we can make these
infinitely-many choices.

More formally, the axiom of choice says that given any family of sets S in which every element of S is
non-empty, then there exists a function f ∶ S → ⋃S such that f(s) ∈ s for each s ∈ S. We call such a function
a choice function for S, which is where the Axiom of Choice gets its name.

In the above example, the fact that there were infinitely-many bins is important, as if there were only
finitely-many of them, we would not have needed to appeal to the Axiom of Choice (from here on out referred
to by “AC ”). The reason is because of what it means to say that a set is non-empty. By saying that a
set s is non-empty, we are implicitly saying that there exists a set t such that t ∈ s. When we have only
finitely-many sets, we can write down that each is non-empty, extract an element from each set using this,
and use the remaining axioms of set theory to define our choice function. This result is called finite choice,
and it follows from the rest of the axioms of set theory, showing that the infinite-case is why we need the
stronger axiom of AC .

It is worth noting that AC is independent of the remaining axioms of Set Theory, the set of which is
called ZF , or Zermelo-Fraenkel Set Theory. This result was established by Paul Cohen using a method
called Forcing.

Note that there are few different ways we could try to understand what exactly the Axiom of Choice is
saying, along with some slight discussion of variants.

Most are familiar with the notion of the Cartesian product, namely that X × Y = {(x, y) ∣ x ∈ X,y ∈ Y }.
We can use this same construction to define the Cartesian product more generally for any finite collection
of sets. When we think about taking the Cartesian product of infinitely-many sets, this gets a bit more
difficult, however. One approach is to think of ordered pairs (x, y) as a function {X,Y } → X ∪ Y , i.e. as a
choice function for {X,Y }. In this way, for any family of sets S, we could define the Cartesian product ∏S
as the set of all choice functions for S. (It is important to note that this definition isn’t really that useful
when we want to have duplicates, but in this setting we consider indexed families of sets, i.e. a function
f ∶ I → S, from an indexing set I into a family of sets S, and then define the Cartesian product to be the
set of choice functions for the graph of f , i.e. the set {(i, f(i)) ∣ i ∈ I}.)

A variation on the above definition of the Axiom of Choice is in requiring that the elements of S be
pairwise disjoint. Call this new axiom AC′. Clearly AC implies AC′, since it is simply a special case, but
AC′ also implies AC . This is because, given any family of non-empty sets S, we can turn it into a family of
pair-wise disjoint sets by replacing S with the set S′ = {s×{s} ∣ s ∈ S}; in this case, we tag the elements in s
with the set they came from. Then by AC′, there exists a choice function f ′ ∶ S′ → ⋃S′. The graph of f ′ has
elements of the form (s, (a, s)) for some a ∈ s for each s ∈ S. Thus, we define a choice function f ∶ S → ⋃S
by letting its graph contain the pairs of the form (s, a).

In order to develop and intuition and appreciation for the Axiom of Choice, we prove many results which
are implied by or equivalent to AC .

The two most important of these, in that they are essential tools in proofs using AC is the Well-Ordering
Theorem and Zorn’s Lemma.
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1 WELL-ORDERING THEOREM

Section 1

Well-Ordering Theorem

We start with the first, the Well-Ordering Theorem. To state and prove it, we must first say what a well-
order is. We say that an ordered pair (W,<) is a strict well-ordered set if < is a strict total order (i.e.
it is irreflexive, asymmetric, transitive, and trichotomous) on W such that given any non-empty subset V
of W , V has a minimum element. Closely related to the notion of a well-ordered set is that of an ordinal.
These can be thought of as the “canonical strict well-ordered sets”. Technically, we say that a set α is an
ordinal if (α, ∈) is a strict well-ordered set and if α is transitive, meaning that if β ∈ α, then β ⊂ α. In other
words, being transitive means that if β is an element of α, so are the elements of β. We won’t let ourselves
get bogged down by this relatively complicated definition. Instead, we need to recognize the following facts
concerning strict well-ordered sets and ordinals:

Theorem 1.1

(a) For every strict well-ordered set (W,<), there exists an ordinal α order-isomorphic to it.

(b) (Hartog’s Lemma) For every set X, there exists an ordinal γ such that there exists no injection
from γ into X.

(c) Any set of ordinals is strict well-ordered by the ∈-relation, e.g. given any two ordinals α,β, we
have either α ∈ β, β ∈ α, or α = β.

(d) An ordinal α is the set of all ordinals less than it.

(e) Transfinite Recursion: If α is an ordinal, X a set, and G ∶ {(β,h ∶ β → X) ∣ β ∈ α} → X any
function, then there exists a function f ∶ α →X such that G(β, f ∣β) = f(β).

Closely related is the notion of a cardinal. An ordinal α is said to be a cardinal if β ∈ α implies there is
no bijection from β onto α. In this sense, cardinals are the canonical representatives of size.

With these results in mind, we state and prove the Well-Ordering Theorem:

Theorem 1.2: Well-Ordering Theorem

Given any set X, there exists a strict well-order < on X.

Proof.
By Hartog’s Lemma, we know that there is an ordinal γ such that there is no injection from γ into
X. By the Axiom of Choice, we know that there exists a choice function for P(X) ∖ {∅}. We use
this to define the well-order < on X recursively, using the Transfinite Recursion Theorem.

Let Y = P(X) ∖ {∅}. We define G ∶ {(α,h ∶ α →X) ∣ α ∈ γ} →X as follows:

G(α,h ∶ α →X) ∶=
⎧⎪⎪⎨⎪⎪⎩

f(X ∖ h[α]) if h[α] ≠X
f(X) otherwise

Then transfinite-recursion says that we have a function g ∶ γ →X such that G(α, g∣α) = g(α), i.e. that
g(α) = f(X∖g[α]) if g[α] ≠X and g(α) = f(X) otherwise. If g[α] =X for some α ∈ γ, then we choose
β to be the least such element of γ for which g(β) = X. Then g∣β is injective because if α1 < α2 < β,
we have g(α2) = f(X ∖ g[α2]) ∈X ∖ g[α2]. Since g(α1) ∈ g[α2], we see that g(α1) ≠ g(α2). Thus, g∣β
gives us a bijection between β and X, and we can use this to embue X with a strict well-order.

Such a β must exist, because by using the same kind of argument, if such a β did not exist,
then g would be an injection, contradicting our assumption that γ had no injection into X.

This is an extremely powerful result, and admits the following immediate corollaries:
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Corollary 1.3

Every set S is in bijection with some cardinal.

Proof.
We know that S can be strict well-ordered, so there is some ordinal α which is order-isomorphic to
S under this ordering, i.e. is in bijection with S. There is then some cardinal κ in bijection with α,
and so κ is in bijection with S.

Given any set S, we use ∣S∣ to denote the unique cardinal in bijection with S, called the cardinality of
S.

Corollary 1.4: Trichotomy Theorem

Given any two sets X,Y , either X injects into Y or Y injects into X.

Proof.
We know that ∣X ∣ ⊂ ∣Y ∣ or ∣Y ∣ ⊂ ∣X ∣, so the inclusion functions give injections. Using the bijections
from X onto ∣X ∣ and of Y onto ∣Y ∣ finishes it off.

In effect, this says that all sizes are comparable, and that all sizes are represented by some cardinal.
Conversely, we can show that if instead of AC we assume the Well-Ordering Theorem, then we can prove

AC :

Theorem 1.5

The Well-Ordering Theorem implies AC .

Proof.
Let S be a family of non-empty sets. Let X = ⋃S. Then by the Well-Ordering Theorem, there exists
a strict well-order < on X. Then define f ∶ S →X by f(s) = least element of s.

Section 2

Zorn’s Lemma

Now we move on to Zorn’s Lemma. Zorn’s Lemma relates to the existence of maximal elements in a poset,
and this applies to many problems. Recall that a poset is a pair (P,≤) where ≤ is a relation on P satisfying
the properties of reflexitivity, anti-symmetry, and transitivity. A chain in a poset (P,≤) is a subset of P ,
which when ≤ is restricted to it becomes a total order. Then Zorn’s Lemma says that if every chair in P
has an upper bound, then there exists a maximal element of P . On the way to proving it, we begin with an
intermediary result:

Theorem 2.1: Hausdorff Maximality Principle

Let (P,≤) be a poset. Then there exists a maximal chain, i.e. there exists a chain C in P
such that if C ′ is another chain with C ⊂ C ′, then C = C ′.

Proof.
By the Well-Ordering Theorem there exists a strict well-order <w on P . Let α be the ordinal order-
isomorphic to (P,<w) and g ∶ α → P the order-isomorphism witnessing this. We want to use this
strict well-ordering to recursively define a maximal chain using Transfinite Recursion.

Let p = g(∅) = g(0) be the <w-least element of P , and then define a recursion formula
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F ∶ {(β,h ∶ β → P ) ∣ β ∈ α} as follows:

F (β,h ∶ β → P ) ∶=
⎧⎪⎪⎨⎪⎪⎩

g(β) if {g(β)} ∪ h[β] is a chain in P

p p otherwise

Then by Transfinite Recursion we know that there exists a function f ∶ α → P such that F (β, f ∣β) =
f(β). Note that when β = 0 = ∅, we know that F (∅, f ∣∅) = p since g(∅) = p and {p} is a chain in P .
Thus, by construction we know that the image f[α] is a chain in P . Moreover, it is a maximal chain
because if there were x such that {x} ∪ f[α] is a chain in P , then {x} ∪ f[g−1(x)] would have been a
chain and thus f(g−1(x)) = x. This shows that f[α] is maximal.

Using this, we prove Zorn’s Lemma:

Theorem 2.2: Zorn’s Lemma

Let (P,≤) be a poset, and suppose that every chain in P has an upper bound. Then there
exists a maximal element of P .

Proof.
Let (P,≤) be as described. By Hausdorff’s Maximality Principle, we know that there exists a maximal
chain C in P . By hypothesis, there exists an upper bound u for C. We claim that u is maximal. If
not, then there is v such that u < v, so because w ≤ u for every w ∈ C, we see that {v} ∪C is a chain,
and so {v} ∪C = C. But this means that v ∈ C, so because u is an upper bound of C, we find that
v ≤ u, giving us a contradiction.

Thus, u is a maximal element.

Zorn’s Lemma has many applications to Order Theory and Algebra. We explore some of the most
important results.

The first application is to vector spaces. Suppose that F is a field (e.g. R,C,Q). Then a F-vector
space is a quadruple (V,+,0, ⋅) where the elements of V are called vectors, + ∶ V × V → V is called vector
addition, 0 is called the zero vector, ⋅ ∶ F × V → V is called scalar multiplication, and the elements of
F called scalars satisfying the following axioms:

(i) + is associative, commutative, 0 is an identity, and there exist inverse.

(ii) Compatibility with Unity: 1 ⋅ v = v for every v ∈ V , where 1 is the multiplicative identity of F.

(iii) Compatibility with Field Multiplication: for any vector v and scalars λ,µ, we have (λµ) ⋅v = λ ⋅ (µ ⋅v).

(iv) Distributivity of Scalar Multiplication over Vector Addition: for any vectors v,w and scalar λ, we have
λ ⋅ (v +w) = (λ ⋅ v) + (λ ⋅w).

(v) Distributivity of Field Addition over Scalar Multiplication: for any vector v and scalars λ,µ, we have
(λ + µ) ⋅ v = (λ ⋅ v) + (µ ⋅ v).

Vector spaces are generalizations of the familiar structures of Rn and Cn, and also include the space
Rn×m of n ×m matrices over R, the space R[x] of single-variable polynomials over R, and even C over R or
R over Q. In the former cases, there is a special invariant called the dimension of the vector space (which
depends on the field we’re working over). This is the size of a basis, which is a set of vectors which is linearly
independent and which spans the vector space.

Given a set S of vectors in V , we say that it is F-linearly-independent if ∑mi=1 λivi = 0 implies that
λi = 0 for each i, where v1, . . . ,vm ∈ S. In other words, it means that no vector in S can be written as a
linear combination of other vectors in S. We then define the span of S to be the set

span(S) ∶= {
m

∑
i=1
λivi ∣ v1, . . . ,vm ∈ V,λ1, . . . , λm ∈ F,m ≥ 0}
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This can be checked to be a F-vector space as well. We say that S spans V if span(S) = V . Finally, we say
that S is a basis for V if S is linearly independent and spans V .

For the cases of the R-vector space Rn, such a basis is (1,0, . . . ,0), (0,1,0, . . . ,0), . . . , (0, . . . ,0,1). A basis
for Rn×m consists of those n ×m matrices which have exactly one entry equal to 1 and the rest equal to 0.
Finally, a basis for R[x] is given by 1, x, x2, x3, . . .. But what of the Q-vector space R? It ends up that this
question, and its generalization about whether every vector space has a basis, requires AC .

To prove that every vector space has a basis, we make use of an alternative definition of a basis, namely
that S is a basis for V if it is a maximal linearly-independent set of vectors. To get some intuition for
converting problems into maximality problems, we shall prove this. Suppose that S is a basis for V , and
suppose for the sake of a contradiction that it is not a maximal linearly-independent set of vectors, i.e. there
exists some v such that S ∪ {v} is linearly-independent. But this implies that v ∉ span(S), contradicting
the fact that S spans V . Conversely, suppose that S is a maximal linearly-independent set. We claim that
span(S) = V , as otherwise there is some v ∉ span(S). But then S ∪{v} is linearly-independent, contradicting
the assumed maximality. Thus, S is a basis.

Theorem 2.3

Every F-vector space V has a basis.

Proof.
To envoke Zorn’s Lemma, we need a poset in which every chain has an upper bound. Since we want
to find a maximal F-linearly-independent set of vectors, the natural choice is to consider the set P
of all linearly-independent subsets of V , ordered by ⊂. Let C be a chain in P ; we want to show that
C has an upper bound in P . Indeed, we claim that ⋃C is an upper bound. To prove this, suppose
that there are v1, . . . ,vm ∈ ⋃C and scalar λ1, . . . , λm such that ∑mi=1 λivi = 0. Each of the vectors vi
originated from some element Si in C. But because C is linearly-ordered by ⊂, we know that ⋃mi=1 Si
is equal to some Sj , since one of them is the largest (the finiteness of linear combinations is important
here). But then this contradicts the fact that Sj is linearly-independent, giving us a contradiction.

Thus, every chain has an upper bound, so that by Zorn’s Lemma there exists a maximal
linearly-independent set S. This is our basis.

We end by showing that Zorn’s Lemma (and so Hausdorff’s Maximality Principle) are equivalent to AC
by showing that Zorn’s Lemma implies the Axiom of Choice:

Theorem 2.4

Zorn’s Lemma implies the Axiom of Choice.

Proof.
Suppose that S is a family of non-empty sets. Our approach will be to consider the poset (P,≤)
whose elements are all the partially-defined choice functions for S (i.e. they are a choice function for
a subset of S) ordered by saying that f ∶ T → ⋃T ≤ g ∶ U → ⋃U if T ⊂ U and f(s) = g(s) for every
s ∈ U . In other words, g is an extension of f (equivalently, f is a restriction of g).

To see that every chain in P has an upper bound in X, suppose we have a chain C. The
elements of C are of the form f ∶ Tf → ⋃Tf , so define g ∶ ⋃f∈C Tf → ⋃⋃f∈C Tf to have graph
consisting of the unions of the graphs of the functions f . This is well-defined by the fact that C is
totally-ordered by the extension relation, and is a choice function on ⋃f∈C Tf because each of the
functions f were choice functions on their domains.

Thus, P has a maximal element h. We claim that h ∶ T → ⋃T is a choice function for S,
i.e. T = S. If not, then there is some s ∉ T , and by the non-emptiness of s we know that there is an
element a ∈ s. But then we can extend h by adding (s, a) to the graph, giving a contradiction. Thus,
T = S, and h is the desired choice function.



3 MORE IMPLICATIONS

Section 3

More Implications

Above we have proven some of the most widely-used results which follow from AC . However, there is an
extremely large number of such results. To get some idea of how many, we prove even more results making
use of AC , the Well-Ordering Theorem, and Zorn’s Lemma:

Theorem 3.1

Every surjective function has a right inverse.

Proof.
Suppose f ∶X → Y is surjection. Consider the family S of fibers f−1(y) for y ∈ Y . By AC there exists
a choice function g ∶ S → X. Then let h ∶ Y → S be the function sending y to the fiber f−1(y). We
claim that (g ○ h) is a right inverse of f . Indeed, given y ∈ Y , (f ○ (g ○ h))(y) = (f ○ g)(f−1(y)), and
g(f−1(y)) is an element x such that f(x) = y, so (f ○ (g ○ h))(y) = y.

Theorem 3.2

A countable union of countable sets is countable.

Proof.
Suppose T is a countable family of countable sets. Let h ∶ N → T be a surjection. Then let S be the
set whose elements are the sets of surjections from N to an element in T . By AC , there exists a choice
function f ∶ S → ⋃S, so in particular for each element t of T , we can select a surjection ft ∶ N → t.
Then define a surjection g ∶ N ×N→ T by sending (n,m) to fh(n)(m).

All that remains is to show that N × N is countable. To see this, we define an injection of
N ×N into N by sending (n,m) to 2n3m.

Theorem 3.3

For every partition Π of a set S, there exists a canonical set of representatives for that
partition.

Proof.
By AC there exists a choice function f ∶ Π → S. Its image is exactly the required canonical set of
representatives.

Theorem 3.4

Every Dedekind-Infinite set is infinite.

Proof.
A set S is Dedekind-infinite if there exists a bijection f ∶ S → T for some proper subset T of S.
To show that every Dedekind-infinite set is infinite, we show that every Dedekind-infinite set has a
countable subset. By the AC , we know that every set is in bijection with some cardinal. Let κ = ∣S∣.
We need to show that κ is infinite, and to show that, we show that if κ is finite, then any proper
subset of κ must have strictly smaller size.

We prove this by induction, with the claim that if ∣X ∣ = n and Y is a proper subset of X, then
∣Y ∣ < n. This holds trivially for n = 0 because of the fact that there is no proper subset of ∅. Now
suppose that the result is true for n, and suppose ∣X ∣ = n + 1 and Y a proper subset of X. Suppose
for the sake of a contradiction that ∣Y ∣ = n + 1, and let f ∶ Y → n + 1 by a bijection realizing this. Let
x ∉ Y , and define g ∶ Y ∪ {x} → n + 2 by g(y) = f(y) for y ∈ Y and g(x) = n + 1. Y ∪ {x} ⊂ X, so
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n + 2 ≤ ∣X ∣, giving a contradiction.

Theorem 3.5: Alexander Subbasis Theorem

Let X be a topological space with a subbasis B. If every subcollection of B that covers X
has a finite subcover, then X is compact.

Proof.
Assume for the sake of a contradiction that every subcollection of B that covers X has a finite
subcover, but X is not compact. If we let P be the collection of al open covers that do not have a
finite subcover, then P is not empty. We partially order this by set inclusion.

Let C be a chain in P, and let C = ⋃S∈C S. Suppose that C has a fintie subcover, say
C0 = {U1, U2, . . . , Un}. For each i, 1 ≤ i ≤ n, there is Si such that Ui ∈ Si ∈ C. Since C is totally
ordered, {Si ∣ 1 ≤ i ≤ n} is also totally ordered, and since it is finite has a maximum element C ′ = Sj
for some j, 1 ≤ j ≤ n. But then C0 ⊂ C ′ ∈ C, and C ′ has a finite subcover, contradicting the fact that
C is a chain in P. Thus, we see that C does not have a finite subcover, and C is an upper bound of
C.

We can thus use Zorn’s Lemma to say that there is a maximal open cover C that does not
have a finite subcover. Now we take C ∩ B. If this covers X, then by hypothesis it has a finite
subcover, and thus so does C. Thus, it does not cover X, so that there is x ∈ C ∩B. Since C is an
open cover, there is U ∈ C such that x ∈ U . Since B is a subbasis, there is S1, S2, . . . , Sm ∈ B with
x ∈ S1 ∩ S2 ∩ ⋯ ∩ Sm ⊂ U . Since C is maximal and, for each i, Si ∉ C, it follows that C ∪ {Si} has a
finite subcover Ci. But then U ∪⋃Ci is a finite subcover.

This leads us to a contradiction, and thus P is empty, meaning X is compact.

This gives us a simple proof of the Tychonoff Theorem:

Theorem 3.6: Tychonoff Theorem

Given Xα compact for each α ∈ J , ∏α∈J Xα is compact in the product topology.

Proof.
We use the Alexander Subbasis Theorem to give a short and simple proof. The subbasis of the
product topology on ∏α∈J Xα is given by B = {π−1β (U) ∣ β ∈ J and U ⊂Xβ open}.

Suppose for the sake of a contradiction that there is a subcollection C of B that covers

∏α∈J Xα that does not have a finite subcover. Take C = ⋃α∈J Cα where πα(Cα) is a subcollection of
open sets in Xα. For each β ∈ J , Cβ has no a finite subcover, so that πβ(Cβ) has no finite subcover, as
if it did, then Cβ would as well, since Cβ is a collection of open sets of Xβ crossed with the remaining
Xα for α ∈ J unequal to β. Since Xβ is compact, this means that πβ(Cβ) must not be a open cover
of Xβ , and there is an element xβ not in πβ(Cβ). Using the Axiom of Choice, we choose for each
α ∈ J such an xα to give us an element (xα)α∈J that is not covered by C, giving us a contradiction
that C covered ∏α∈J Xα.

Thus, every subcollection C o fB that covers ∏α∈J Xα has a finite subcover, so that by the
Alexander Subbasis Theorem, we see that ∏α∈J Xα is compact.

Theorem 3.7: Existence of Unmeasurable Sets

There exists a subset of (0,1] that is not Lebesgue measurable.

Proof.
We shall define an equivalence relation on (0,1] by saying that x ≃ y if x−y ∈ Q. There are necessarily
uncountably-many equivalence classes. Using the axiom of choice, there exists a set E such that E
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contains precisely one element from each equivalence class. Let Q∗ ∶= Q ∩ (0,1], and for each q ∈ Q∗

we take E + q = {q + x mod 1 ∣ x ∈ E}. Note that (E + q) ∩ (E + r) = ∅ if q, r ∈ Q∗, because otherwise
x+q = y+r, and thus x−y = r−q is rational, meaning that x ∼ y, contradicting the fact that E contains
exactly one element from each equivalence class. Next, by construction we have (0,1] = ⋃q∈Q∗ (E + q).

Our aim for a contradiction is to suppose that E is measurable. Then E+q is also measurable
and moreover by the (modulo 1 version of) translation invariance of the Lebesgue measure (which we
will soon prove), we see that µ(E + q) = µ(E). But then µ((0,1]) = 1 = ∑∞

k=0 µ(E + qk) = ∑∞
k=0 µ(E).

If E is measurable, then µ(E) is either 0 or a positive number; it cannot be 0 for then the sum is 0
and we have 1 = 0, a contradiction, and it cannot be a positive number for then the sum is ∞ and we
have 1 = ∞. Thus, E cannot be measurable.

Theorem 3.8: Hahn-Banach Theorem

Let X be a normed space, Y a subspace, and g ∈ Y ∗. Then there is f ∈X∗ such that f ∣Y = g,
and ∥f∥ = ∥g∥.

Proof.
First assume that F = R, so X is a real normed space. Without loss of generality we can assume that
∥g∥ = 1. Now, if Y =X, then we are done. Otherwise, we can pick x ∈X∖Y , and let Y1 = Y ⊕span{x1}.
Then we define f1 ∶ Y1 → R by sending f1(y + λx1) = g(y) + λα where y ∈ Y,λ ∈ R, and α ∈ R is to be
determined. It is clear that f1∣Y = g, so we just need α ∈ R so that ∥f1∥ ≤ 1; it is automatically at least
as large as 1 by the fact that ∥g∥ = 1. Then we want ∣g(y)−λα∣ ≤ ∥y + λx1∥ for all y ∈ Y and λ ∈ R, which
is equivalent to ∣g(y) + α∣ ≤ ∥y + x1∥ for all y ∈ Y (we divide both sides by ∣λ∣), which is equivalent to
g(y)+α ≤ ∥y + x1∥ and −(g(y)+α) ≤ ∥y + x1∥. This is equivalent to −g(z)−∥z + x1∥ ≤ α ≤ ∥y + x1∥−g(y)
for all y, z ∈ Y . Such an α exists if and only if −g(z) − ∥z + x1∥ ≤ ∥y + x1∥ − g(y) for all y, z ∈ Y . Then

−g(z) + g(y) = g(−z + y) ≤ ∥−z + y∥ = ∥−z − x1 + y + x1∥ ≤ ∥z + x1∥ + ∥y + x1∥ .

We consider P = {(Z,h) ∣ Y ⊂ Z ⊂ X,h ∈ Z∗, h∣Y = g, ∥h∥ = 1}. We make this a partially
ordered set by setting (Z1, h1) ≤ (Z2, h2) if and only if Z1 ⊂ Z2 and h2∣Z1 = h1. P is non-empty
because (Y, g) ∈ P , and given a chain C = {(Zi, hi) ∣ i ∈ I} in P this has an upper bound by taking
Z = ⋃i∈I Zi and taking h(z) = hi(z) for i ∈ I, z ∈ Zi, which is well-defined by the partial ordering on
P . Then (Z,h) ∈ P and (Z,h) ≥ (Zi, hi). Then by Zorn’s Lemma, we find that P has a maximal
element (W,f). Now, it must be that W =X because otherwise we can extend W as in the first part
of our proof to contradict the maximality of (W,f).

Now we approach the case where F = C. Let XR be the space X viewed as a real normed
space. For f ∈X∗, we let R(f) be defined by x↦R(f(x)). This is R-linear and

∣R(f)(x)∣ = ∣R(f(x))∣ ≤ ∣f(x)∣ ≤ ∥f∥ ∥x∥

so R(f) ∈ (XR)∗ and ∥R(f)∥ ≤ ∥f∥. We show that f ↦ R(f) is a R-linear isometric isomorphism
X∗ → (XR)∗.

Given x ∈ X, we choose λ ∈ C such that ∣λ∣ = 1 and ∣f(x)∣ = λf(x). Then ∣f(x)∣ = f(λx) =
R(f(λx)) ≤ ∥R(f)∥ ⋅ ∥λx∥ = ∥R(f)∥ ∥x∥. So ∥R(f)∥ = ∥f∥.

Given h ∈ (XR)∗, suppose that R(f) = h and let k = im(f). Then f = h + ik, but also
−if(ix) = −ih(ix) + k(ix), and thus (using C-linearity) f(x) = h(x) − ih(ix). This shows that f is
uniquely identified by R(f), and thus we have injectivity. This also shows surjectivity.

[[finish?]]
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